Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667787

RESUMEN

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Asunto(s)
Región CA1 Hipocampal , Gerbillinae , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Daño por Reperfusión , Sefarosa/análogos & derivados , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Masculino , Daño por Reperfusión/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Polisacáridos/farmacología , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542434

RESUMEN

Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.


Asunto(s)
Isquemia Encefálica , Glucósidos Iridoides , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/metabolismo , Gliosis , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
3.
Antioxidants (Basel) ; 12(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37237948

RESUMEN

Aucubin is an iridoid glycoside that displays various pharmacological actions including antioxidant activity. However, there are few reports available on the neuroprotective effects of aucubin against ischemic brain injury. Thus, the aim of this study was to investigate whether aucubin protected against damage to hippocampal function induced by forebrain ischemia-reperfusion injury (fIRI) in gerbils, and to examine whether aucubin produced neuroprotection in the hippocampus against fIRI and to explore its mechanisms by histopathology, immunohistochemistry, and Western analysis. Gerbils were given intraperitoneal injections of aucubin at doses of 1, 5, and 10 mg/kg, respectively, once a day for seven days before fIRI. As assessed by the passive avoidance test, short-term memory function following fIRI significantly declined, whereas the decline in short-term memory function due to fIRI was ameliorated by pretreatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin. Most of the pyramidal cells (principal cells) of the hippocampus died in the Cornu Ammonis 1 (CA1) area four days after fIRI. Treatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin protected the pyramidal cells from IRI. The treatment with 10 mg/kg of aucubin significantly reduced IRI-induced superoxide anion production, oxidative DNA damage, and lipid peroxidation in the CA1 pyramidal cells. In addition, the aucubin treatment significantly increased the expressions of superoxide dismutases (SOD1 and SOD2) in the pyramidal cells before and after fIRI. Furthermore, the aucubin treatment significantly enhanced the protein expression levels of neurotrophic factors, such as brain-derived neurotrophic factor and insulin-like growth factor-I, in the hippocampal CA1 area before and after IRI. Collectively, in this experiment, pretreatment with aucubin protected CA1 pyramidal cells from forebrain IRI by attenuating oxidative stress and increasing neurotrophic factors. Thus, pretreatment with aucubin can be a promising candidate for preventing brain IRI.

4.
J Integr Neurosci ; 22(2): 26, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36992594

RESUMEN

BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Gerbillinae , Barrera Hematoencefálica , Enfermedades Neuroinflamatorias , Hipocampo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Fármacos Neuroprotectores/farmacología
5.
Vet Sci ; 10(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977223

RESUMEN

Multi-organ dysfunction following cardiac arrest is associated with poor outcome as well as high mortality. The kidney, one of major organs in the body, is susceptible to ischemia and reperfusion; however, there are few studies on renal ischemia and reperfusion injury (IRI) following the return of spontaneous circulation (ROSC) after cardiac arrest. Risperidone, an atypical antipsychotic drug, has been discovered to have some beneficial effects beyond its original effectiveness. Therefore, the aim of the present study was to investigate possible therapeutic effects of risperidone on renal IRI following cardiac arrest. Rats were subjected to cardiac arrest induced by asphyxia for five minutes followed by ROSC. When serum biochemical analyses were examined, the levels of serum blood urea nitrogen, creatinine, and lactate dehydrogenase were dramatically increased after cardiac arrest, but they were significantly reduced by risperidone administration. Histopathology was examined using hematoxylin and eosin staining. Histopathological injury induced by cardiac arrest was apparently attenuated by risperidone administration. Furthermore, alterations in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and anti-inflammatory cytokines (interleukin-4 and interleukin-13) were examined by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokine immunoreactivities were gradually and markedly increased and decreased, respectively, in the kidneys following cardiac arrest; however, risperidone administration after cardiac arrest significantly attenuated the increased pro-inflammatory cytokine immunoreactivities and the decreased anti-inflammatory cytokine immunoreactivities. Collectively, our current results revealed that, in rats, risperidone administration after cardiac arrest protected kidneys from IRI induced by cardiac arrest and ROSC through anti-inflammatory effects.

6.
Cells ; 12(3)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766758

RESUMEN

Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1ß (IL-1ß, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).


Asunto(s)
Paro Cardíaco , Hipotermia Inducida , Hipotermia , Animales , Masculino , Ratas , Astrocitos/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Hemo-Oxigenasa 1/metabolismo , Miembro Posterior/metabolismo , Hipotermia/metabolismo , Hipotermia Inducida/métodos , Neuronas Motoras/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Parálisis , Ratas Sprague-Dawley , Transducción de Señal
7.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354992

RESUMEN

Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Oxazolona/toxicidad , Oxazolona/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Inmunoglobulina E , Extractos Vegetales/farmacología , Administración Tópica , Citocinas/metabolismo , Ratones Endogámicos BALB C , Piel
8.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563487

RESUMEN

Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.


Asunto(s)
Ataque Isquémico Transitorio , Corteza Motora , Daño por Reperfusión , Animales , Astrocitos/metabolismo , Células Endoteliales/metabolismo , Gerbillinae/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Isquemia/metabolismo , Ataque Isquémico Transitorio/metabolismo , Corteza Motora/metabolismo , Prosencéfalo/metabolismo , Daño por Reperfusión/metabolismo
9.
Mar Drugs ; 20(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447940

RESUMEN

Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.


Asunto(s)
Lesiones Encefálicas , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Superóxido Dismutasa-1/metabolismo , Xantófilas
10.
Int J Mol Med ; 49(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234273

RESUMEN

The hippocampus has a different vulnerability to ischemia according to the subfields CA1 to CA3 (initials of cornu ammonis). It has been reported that body temperature changes during ischemia affect the degree of neuronal death following transient ischemia. Hypoxia­inducible factor 1α (HIF­1α) plays a key role in regulating cellular adaptation to low oxygen conditions. In the present study, we investigated the pattern of neuronal death (loss) in CA1 and CA2/3 following 5 min transient forebrain ischemia (TFI) under hyperthermia (39.5±0.2˚C) and the relationship between neuronal death and changes in HIF­1α expression using western blot analysis and immunohistochemistry in gerbils. Normothermia or hyperthermia was induced for 30 min before and during the TFI, and neuronal death and HIF­1α expression were observed at 0, 3, 6 and 12 h, 1, 2 and 5 days after TFI. Under normothermia, TFI­induced neuronal death of CA1 pyramidal neurons occurred on day 5 after TFI, but CA2/3 pyramidal neurons did not die. In contrast, under hyperthermia, the death of CA1 and CA2/3 pyramidal neurons was observed on day 2 after TFI. Under normothermia, HIF­1α expression was significantly elevated in both CA1 and CA2/3 pyramidal neurons at 12 h and 1 day after TFI, and the increased HIF­1α immunoreactivity in CA1 was dramatically reduced from 2 days after TFI, but not in CA2/3 pyramidal neurons. Under hyperthermia, the basal expression of HIF­1α in the sham group was significantly higher in both CA1 and CA2/3 pyramidal neurons at 0 h after TFI than in the normothermia group. HIF­1 expression was continuously higher, peaked at 12 h after TFI, and then significantly decreased from 1 day after TFI. Overall, the present results indicate that resistance to ischemia in CA2/3 pyramidal neurons is closely associated with the persistence of increased expression of HIF­1α after ischemic insults and that hyperthermia­induced exacerbation of death of pyramidal neurons is closely related to decreased HIF­1α expression after ischemic insults.


Asunto(s)
Hipocampo , Hipertermia Inducida , Animales , Gerbillinae/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Células Piramidales/metabolismo
11.
Korean J Physiol Pharmacol ; 26(1): 47-57, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965995

RESUMEN

Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

12.
Vet Sci ; 8(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34679060

RESUMEN

Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1ß), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR.

13.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576901

RESUMEN

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Gerbillinae , Polifenoles , Populus , Animales , Muerte Celular/efectos de los fármacos , Hipocampo/metabolismo , Neuronas/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico
14.
Biology (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439951

RESUMEN

Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.

15.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361744

RESUMEN

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Asunto(s)
Antiinflamatorios/farmacología , Isquemia Encefálica/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Pinus/química , Prosencéfalo/efectos de los fármacos , Animales , Antiinflamatorios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Flavonoides/química , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patología , Inflamación , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fármacos Neuroprotectores/química , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Proantocianidinas/química , Proantocianidinas/farmacología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Lab Anim Res ; 37(1): 16, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261545

RESUMEN

BACKGROUND: Hypothermic treatment is known to protect organs against cardiac arrest (CA) and improves survival rate. However, few studies have evaluated the effects of hypothermia on CA-induced liver damages. This study was designed to analyzed the possible protective effects of hypothermia on the liver after asphyxial CA (ACA). Rats were randomly subjected to 5 min of ACA followed by return of spontaneous circulation (ROSC). Body temperature was controlled at 37 ± 0.5 °C (normothermia group) or 33 ± 0.5 °C (hypothermia group) for 4 h after ROSC. Liver tissues were extracted and examined at 6 h, 12 h, 1 day, and 2 days after ROSC. RESULTS: The expression of infiltrated neutrophil marker CD11b and matrix metallopeptidase-9 (MMP9) was investigated via immunohistochemistry. Morphological damage was assessed via hematoxylin and eosin (H & E) staining. Hypothermic treatment improved the survival rate at 6 h, 12 h, 1 day, and 2 days after ACA. Based on immunohistochemical analysis, the expression of CD11b and MMP9 was significantly increased from 6 h after ACA in the normothermia group. However, the expressions of CD11b and MMP9 was significantly decreased in the hypothermia group compared with that of the normothermia group. In addition, in the results of H & E, sinusoidal dilatation and vacuolization were apparent after ACA; however, these ACA-induced structural changes were reduced by the 4 h-long hypothermia. CONCLUSIONS: In conclusion, hypothermic treatment for 4 h inhibited the increases in CD11b and MMP9 expression and reduced the morphological damages in the liver following ACA in rats. This study suggests that hypothermic treatment after ACA reduces liver damages by regulating the expression of CD11b and MMP9.

17.
Mol Med Rep ; 24(3)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34212986

RESUMEN

Tumor necrosis factor (TNF)­α and TNF receptor 1 (TNF­R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time­dependent changes of TNF­α and TNF­R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF­α protein expression levels gradually increased in both groups following tFI; however, TNF­α expression was higher in young gerbils compared with adult gerbils. TNF­R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF­R1 expression gradually decreased in young gerbils, whereas TNF­R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF­α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF­α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF­α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF­α immunoreactivity was newly expressed in astrocytes. In addition, TNF­R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF­R1 immunoreactivity. In young gerbils, TNF­R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF­R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF­α and TNF­R1 in ischemic CA1 between adult and young gerbils may be due to age­dependent differences of tFI­induced neuronal death.


Asunto(s)
Astrocitos/metabolismo , Región CA1 Hipocampal/metabolismo , Gerbillinae/metabolismo , Neuronas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Isquemia Encefálica/patología , Muerte Celular , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Isquemia/patología , Masculino , Neurogénesis , Prosencéfalo , Células Piramidales/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética
18.
Exp Ther Med ; 21(6): 626, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33968162

RESUMEN

Hypothermic treatment is known to protect against cardiac arrest (CA) and improve survival rate. However, few studies have evaluated the CA-induced liver damage and the effects of hypothermia on this damage. Therefore, the aim of the present study was to determine possible protective effects of hypothermia on the liver after asphyxial CA. Rats were subjected to a 5-min asphyxial CA followed by return of spontaneous circulation (ROSC). The body temperature was controlled at 37±0.5˚C (normothermia group) or 33±0.5˚C (hypothermia group) for 4 h after ROSC. Livers were examined at 6, 12 h, 1 and 2 days after ROSC. Histopathological examination was performed by H&E staining. Alterations in the expression levels of pro-inflammatory (TNF-α and interleukin IL-2) and anti-inflammatory cytokines (IL-4 and IL-13) were investigated by immunohistochemistry. Sinusoidal dilatation and vacuolization were observed after asphyxial CA by histopathological examination. However, these CA-induced structural alterations were prevented by hypothermia. In immunohistochemical examination, the expression levels of pro-inflammatory cytokines were reduced in the hypothermia group compared with those in the normothermia group while the expression levels of anti-inflammatory cytokines were increased in the hypothermia group compared with those in the normothermia group. In conclusion, hypothermic treatment for 4 h following asphyxial CA in rats inhibited the increase of pro-inflammatory cytokines and stimulated the expression of anti-inflammatory cytokines compared with the normothermic group. The results of the present study suggested that hypothermic treatment after asphyxial CA reduced liver damage via the regulation of inflammation.

19.
Neurochem Res ; 46(11): 2852-2866, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34050880

RESUMEN

Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neuronas/metabolismo , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Muerte Celular/fisiología , Citocinas/genética , Expresión Génica , Gerbillinae , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/patología , Masculino , Neuronas/patología , Índice de Severidad de la Enfermedad
20.
Antioxidants (Basel) ; 10(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924188

RESUMEN

Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3ß (GSK3ß), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3ß pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...